Impact of Horizontal Resolution on Precipitation in Complex Orography Simulated by the Regional Climate Model RCA3

Typ: Vetenskaplig artikel
Referens: Güttler, I., Stepanov, I., Branković, Č., Nikulin, G. and Jones C 2015 Mon. Wea. Rev., 143, 3610–3627. doi:


The hydrostatic regional climate model RCA, version 3 (RCA3), of the Swedish Meteorological and Hydrological Institute was used to dynamically downscale ERA-40 and the ECMWF operational analysis over a 22-yr period. Downscaling was performed at four horizontal resolutions—50, 25, 12.5, and 6.25 km—over an identical European domain. The model-simulated precipitation is evaluated against high-resolution gridded observational precipitation datasets over Switzerland and southern Norway, regions that are characterized by complex orography and distinct climate regimes.
RCA3 generally overestimates precipitation over high mountains: during winter and summer over Switzerland and during summer over central-southern Norway. In the summer, this is linked with a substantial contribution of convective precipitation to the total precipitation errors, especially at the coarser resolutions (50 and 25 km). A general improvement in spatial correlation coefficients between simulated and observed precipitation is observed when the horizontal resolution is increased from 50 to 6 km. The 95th percentile spatial correlation coefficients during winter are much higher for southern Norway than for Switzerland, indicating that RCA3 is more successful at reproducing a relatively simple west-to-east precipitation gradient over southern Norway than a much more complex and variable precipitation distribution over Switzerland. The 6-km simulation is not always superior to the other simulations, possibly indicating that the model dynamical and physical configuration at this resolution may not have been optimal. However, a general improvement in simulated precipitation with increasing resolution supports further use and application of high spatial resolutions in RCA3.